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Abstract

We outline a class of problems, typical of Mars
rover operations, that are problematic for cur-
rent methods of planning under uncertainty. The
existing methods fail because they suffer from
one or more of the following limitations: 1) they
rely on very simple models of actions and time,
2) they assume that uncertainty is manifested in
discrete action outcomes, 3) they are only prac-
tical for very small problems. For many real
world problems, these assumptions fail to hold.
In particular, when planning the activities for a
Mars rover, none of the above assumptions is
valid: 1) actions can be concurrent and have dif-
fering durations, 2) there is uncertainty concern-
ing action durations and consumption of contin-
uous resources like power, and 3) typical daily
plans involve on the order of a hundred actions.
This class of problems may be of particular in-
terest to the UAI community because both clas-
sical and decision-theoretic planning techniques
may be useful in solving it. We describe the rover
problem, discuss previous work on planning un-
der uncertainty, and present a detailed, but very
small, example illustrating some of the difficul-
ties of finding good plans.

1 THE PROBLEM

Consider a rover operating on the surface of Mars. On a
given day, there are a number of different scientific obser-
vations or experiments that the rover could perform, and
these are prioritized in some fashion (each observation or
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experiment is assigned a scientific value). Different ob-
servations and experiments take differing amounts of time
and consume differing amounts of power and data storage.
There are, in general, a number of constraints that govern
the rovers activities:

� There are time, power, data storage, and posi-
tioning constraints for performing different activi-
ties. Time constraints often result from illumination
requirement—that is, experiments may require that a
target rock or sample be illuminated with a certain in-
tensity, or from a certain angle.

� Experiments have setup conditions (preconditions)
that must hold before they can be performed. For ex-
ample, the rover will usually need to be at a particular
location and orientation for each experiment and will
need instruments turned on, initialized, and calibrated.
In general, there may be multiple ways of achieving
some of these setup conditions (e.g. different travel
routes, different choice of cameras).

� The amount of power available varies according to the
time of day, since solar flux is a function of the angle
of the sun.

Given these constraints, the objective is to maximize scien-
tific return for the rover—that is, find the plan with maxi-
mal utility. Unfortunately, for many rover activities, there is
inherent uncertainty about the duration of tasks, the power
required, the data storage necessary, the position and orien-
tation of the rover, and environmental factors that influence
operations, e.g., soil characteristics, dust on the solar pan-
els, ambient temperature, etc.

For example, in driving from one location to another, the
amount of time required depends on wheel slippage and
sinkage, which varies depending on slope, terrain rough-
ness, and soil characteristics. All of these factors also in-
fluence the amount of power that is consumed. The amount
of energy collected by the solar panels during this traverse
depends on the length of the traverse, but also on the an-



gle of the solar panels. This is dictated by the slope and
roughness of the terrain.

Similarly, for certain types of instruments, temperature af-
fects the signal to noise ratio and, hence, affects the amount
of time required to collect useful data. Since the tempera-
ture varies depending on the time of day and the weather
conditions, this duration is uncertain. The amount of power
used depends upon the duration of the data collection. The
amount of data storage required depends on the effective-
ness of the data compression techniques, which ultimately
depends on the nature of the data collected.

In short, this domain is rife with uncertainty. Plans that do
not take this uncertainty into account usually fail miserably.
In fact, it has been estimated that the 1997 Mars Pathfinder
rover spent between 40% and 75% of its time doing nothing
because of plan failure.

One way to attack this problem is to rely on real-time or re-
active replanning when failures occur. While this capabil-
ity is certainly desirable, there are several difficulties with
exclusive reliance on this approach:

� Spacecraft and rovers have severely limited computa-
tional resources due to power limitations and radiation
hardening requirements. As a result, it is not always
feasible to do timely onboard replanning.

� Many actions are potentially risky and require pre-
approval by mission operations personnel. Because of
the cost and difficulty of communication, the rover re-
ceives infrequent command uplinks (typically one per
day). As a result, each daily plan must be constructed
and checked for safety well in advance.

� Some contingencies require anticipation; e.g., switch-
ing to a backup system may require that the backup
system be warmed up in advance. For time critical op-
erations such as orbit insertions or landing operations
there is insufficient time to perform these setup oper-
ations once the contingency has occurred, no matter
how fast the planning can be done.

For these reasons, it is sometimes necessary to plan in ad-
vance for potential contingencies—that is, anticipate unex-
pected outcomes and events and plan for them in advance.

The problem that we have just described is essentially a
decision-theoretic planning problem. More precisely, the
problem is to produce a (concurrent) plan with maximal
expected utility, given the following domain information:

� A set of possible goals that may be achievable, each
of which has a value or reward associated with it.

� A set of initial conditions, which may involve uncer-
tainty about continuous quantities like temperature,

energy available, solar flux, and position. This un-
certainty is characterized by probability distributions
over the possible values.

� A set of possible actions, each of which is character-
ized by:

– a set of conditions that must be true before the ac-
tion can be performed. (These may include met-
ric temporal constraints as well as constraints on
resource availability.)

– an uncertain duration characterized by a proba-
bility distribution.

– a set of certain and uncertain effects that describe
the world following the action. Uncertain ef-
fects on continuous variables are characterized
by probability distributions.

Decision-theoretic planning is already known to be quite
hard both in theory [20] and in practice. However, there
are some characteristics of this domain, which, when taken
together, make this planning problem both difficult and dif-
ferent from the kinds of problems that have been studied in
the past:

Time: actions take differing amounts of time and concur-
rency is often necessary.

Continuous outcomes: most of the uncertainty is associ-
ated with continuous quantities like time and power.
In other words, actions do not have a small number of
discrete outcomes.

Problem size: a typical daily plan for a rover will involve
on the order of a hundred actions.

While we have described this scenario for a rover, this kind
of problem is not limited to robotics or even space applica-
tions. For example, in a logistics problem, travel durations
are influenced by both traffic and weather considerations.
Fuel use is likewise influenced by these “environmental”
factors. There are temporal constraints on the availability
and delivery of cargo, as well as on the availability of both
facilities and crew. There are also constraints on fuel load-
ing and availability, and on maintenance operations.

2 PREVIOUS WORK

There has been considerable work in AI on planning under
uncertainty. Table 1 classifies much of this work along the
following two dimensions:

Representation of uncertainty: whether uncertainty is
modeled strictly logically, using disjunctions, or is
modeled numerically, with probabilities.



Observability assumptions: whether the uncertain out-
comes of actions are not observable, partially observ-
able, or fully observable.

Table 1: A classification of planners that deal with uncer-
tainty. Planners in the top row are often referred to as con-
formant planners, while those in the other two rows are of-
ten referred to as contingency planners

Disjunction Probability
CGP [34]

Non CMBP [11, 1] Buridan [19]
Observable C-PLAN [10, 15] UDTPOP [26]

Fragplan [18]
SENSp [14] C-Buridan [12]

Cassandra [28] DTPOP [26]
Partially PUCCINI [16] C-MAXPLAN [21]

Observable SGP [37] ZANDER [21]
QBF-Plan [30] Mahinur [25]

GPT [7] POMDP [8]
MBP [2]

JIC [13]
Fully WARPLAN-C [36] Plinth [17]

Observable CNLP [27] Weaver [5]
PGP [4]
MDP [8]

We do not discuss this work in detail here. A survey of
some of this work can be found in Blythe [6]. A more
detailed survey of work on MDPs and POMDPs can be found
in Boutilier, Dean and Hanks [8]. Instead we will focus
on why this work is generally not applicable to the rover
problem and what can be done about this.

There are a number of difficulties in attempting to apply
existing work on planning under uncertainty to spacecraft
or rovers. First of all, the work listed in Table 1 assumes
a very simple model of action in which concurrent ac-
tions are not permitted, explicit time constraints are not
allowed, and actions are considered to be instantaneous.
As we said above, none of these assumptions hold for typ-
ical spacecraft or rover operations. These characteristics
are not as much of an obstacle for Partial-Order Planning
frameworks such as SENSp [14], PUCCINI [16], WARPLAN-
C [36], CNLP [27], Buridan [19], UDTPOP [26], C-Buridan
[12], DTPOP [26], Mahinur [25] and Weaver [5]. In theory,
these systems could represent plans with concurrent actions
and complex temporal constraints. The requirements for
a rich model of time and action are more problematic for
planning techniques that are based on the MDP or POMDP

representations, satisfiability encodings, the graphplan rep-
resentation, or state- space encodings. These techniques
rely heavily on a discrete model of time and action. (See
[33] for a more detailed discussion of this issue.) Although
semi-Markov decision processes (SMDPs) [29] and tempo-

ral MDPs (TMDP) [9] can be used to represent actions with
uncertain durations, they cannot model concurrent actions
with complex temporal dependencies. The factorial MDP

model has recently been developed to allow concurrent ac-
tions in an MDP framework. However, this model is limited
to discrete time and state representations. Moreover, exist-
ing solution techniques are either too general to be efficient
on real-world problems (e.g. Singh and Cohn [31]), or too
domain-specific to be applicable to the rover problem (e.g.
Meuleau et al. [22]).

A second, and equally serious, problem with existing con-
tingency planning techniques is that they all assume that
uncertain actions have a small number of discrete out-
comes. For example, in the representation popularized by
Buridan and C-Buridan, a rover movement action might
be characterized as shown in Figure 1. In this represen-
tation, each arrow to a propositions on the right indicates
a possible outcome of the action, along with the associ-
ated probability of that transition. To characterize where
a rover could end up after a move operation, we have to
list all the different possible discrete locations. We would
need to do something similar to characterize power usage.
For most spacecraft and rover activities this kind of dis-
crete representation is impractical most of the uncertainty
involves continuous quantities, such as the amount of time
and power an activity requires. Action outcomes are dis-
tributions over these continuous quantities. There is some
recent work using models with continuous states and/or ac-
tion outcomes in both the MDP [3, 23, 24, 32] and POMDP

[35] literature, but this has not yet been applied to SMDPs
and has primarily been applied to reinforcement learning
rather than planning problems.
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Figure 1: A C-Buridan action for movement.

Ultimately, the state that results from performing an ac-
tion determines the future actions that will be taken, so
some dimensions of an action’s outcomes are discretized.
However, this discretization is not a static property of the
actions—instead, it depends on what goals or subgoals the
planner is trying to accomplish. For example, suppose that
the rover is trying to move to a certain location. If the ob-
jective is to place an instrument on a particular rock feature,
then the tolerance in position is quite small. In contrast, if
the objective is to take a picture from a different vantage
point, then the tolerance can be significantly larger.



A third problem with conventional contingency planning
technology is that it does not scale to larger problems. Part
of the problem is that most of the algorithms attempt to ac-
count for all possible contingencies. In effect, they try to
produce policies. For spacecraft and rover operations, this
is not realistic or tractable—a daily plan can involve on the
order of a hundred operations, many of which have uncer-
tain outcomes that can impact downstream actions. The
resulting plans must also be simple enough that they can be
understood by mission operators, and it must be feasible to
do detailed simulation and validation on them in a limited
time period. This means that a planner can only afford to
plan in advance for the “important” contingencies and must
leave the rest to run-time replanning. Of the planning sys-
tems discussed above, only Just-In-Case (JIC) contingency
scheduling [13] and Mahinur [25] exhibit a principled ap-
proach to choosing what contingencies to focus on. We will
discuss this approach in more detail later.

3 A DETAILED EXAMPLE

In order to illustrate the problem further, in this section we
give a detailed example of a very small rover problem. Fig-
ure 2 shows a “primary” plan and two potential branches.
The primary plan consists of approaching a target point (Vi-
sualServo), digging the soil (Dig), backing up (Drive), and
taking spectral images of the area (NIR). One potential al-
ternate branch consists of replacing the spectral image with
a high-resolution camera image of the target (Hi res). A
second potential branch consists of taking a low-resolution
panorama of the area (Lo res), performing on-board image
analysis to find rocks in the panorama (Rock finder), and
then taking spectral images of the rocks found (NIR). For
this example, we assume that energy is only being depleted.
(More generally, a rover would also be receiving energy in-
put from charging.

Precedence constraints are denoted by arrows in the fig-
ure; for example, since HiRes can only be performed after
Drive, there is an arrow from Drive to HiRes. For each
action, there may be preconditions, expectations, and a lo-
cal utility; in the figure, these appear above the plan ac-
tions. The preconditions specify under what conditions ex-
ecution of the action may start. The expectations describe
the expected resource consumption of the actions (in terms
of mean and standard deviation); the relative width of dis-
tributions is illustrated graphically as well. The local utility
is the reward received when the action terminates success-
fully: in this example, this will be when the preconditions
are met and when the energy resource is non-negative at the
end of execution.

In the example, consider the HiRes action. It has an energy
precondition � � ���� Ah and a time precondition of 9:00
� � � 16:00. The expected energy usage is 0.01 Amp-
hours (Ah) with a standard deviation of 0 Ah (so in this

Dig(60) Drive(-2) NIRVisualServo(27 13)

Lo res NIRRock finder

Hi res

µ = 1000 s
σ = 500 s

µ = 60 s
σ = 1 s

µ = 40 s
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σ = .5 Ah
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Figure 2: A detailed rover problem. A “main” plan, and
two possible alternative branch plans are shown. Probabil-
ity distributions for time and energy usage are shown for
each action. Time and energy constraints for actions are
shown in bold.

case there is no uncertainty in the model). The expected
duration is 5 seconds with a standard deviation of 1 second.
The local utility of the action is � � ��.

4 APPROACHES

There are several possible ways of attacking this problem
of planning with continuous uncertain variables. In this
section, we briefly discuss some of these, and the issues
that arise.

4.1 COMPUTING THE OPTIMAL VALUE
FUNCTION

Figure 3 shows the optimal value function for the problem
in Figure 2. It represents the expected utility obtained by
following an optimal (Markov) policy of the MDP repre-



senting the problem. The figure was computed by work-
ing backwards from all possible activities that have posi-
tive reward and using dynamic programming to construct
the optimal plan, after a fine discretization of both time and
energy.1 The curved hump where there is lots of power
and time available corresponds to the primary plan, while
the rectangular block corresponds to branching to the Rock
finder plan and completing the NIR. The tail of the curved
hump is a branch after the drive action to the HiRes plan.
The flat surface with value 5 that covers nearly all the rest
of the space is again an immediate branch to the Rock-
Finder plan, but in this area there is not enough power or
time to complete the plan, and only the LoRes reward is re-
ceived. Figure 4 shows a cross-section through this surface
for power equal to 11, showing how the various branches
contribute to the overall plan. The utility curve of each
branch, identified by its goal, represents the expected re-
ward if we commit to the branch before knowing the initial
conditions (start time). The maximum (upper envelope) of
these curves is the expected utility of the best plan that first
selects a branch depending on initial conditions, and then
commits to this branch. The utility of the optimal policy
(labeled as “all”) is higher in some places than the util-
ity of the best branch. This is because the optimal policy
never commits prematurely to a branch. This increase in
expected reward is due to the benefits of waiting to see how
much time is available after part of the best plan has been
performed, and branching to an alternative plan if the best
one is unlikely to succeed in the remaining time, rather than
comitting to a particular plan immediately.
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Figure 3: Optimal value function for the example in Figure
2. The left axis is increasing energy from 0 to 20. The right
axis is start time from 14:30 down to 13:20. Vertical axis is
expected utility.

1With a grid of 420 steps for time and 200 steps for energy,
the size of the state space is about 2.7 ��

�. Moreover, it grows
excponentially with the number of actions in the problem, so that
this approach is unfeasible for any real size problem.
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Figure 4: Slice of the optimal value function for energy =
11 Ah, along with the component curves that contribute to
the overall utility.

Given a detailed contingent plan and the distributions for
time and resource usage, it is relatively straightforward to
evaluate the expected utility of the plan. If the distribu-
tions are very simple, it may be possible to compute this
quantity exactly; more generally, this will have to be done
with stochastic simulation. Thus, if we could generate all
possible contingent plans for a problem, we could evaluate
each of them and choose the one with highest utility. Of
course this is completely impractical for problems of any
size, partly because it is impossible to enumerate the con-
ditions for conditional branches. The dynamic program-
ming approach we took above is an alternative, but it too
is computationally expensive, and it fails completely when
resource availability is not monotonically decreasing (be-
cause optimization can no longer be performed through a
single backward pass).

4.2 HEURISTIC APPROACHES

One possibility is to try to plan for the worst case scenario.
Thus, in the example from the last section, we could as-
sume that the drive operation requires time and power that
is one or perhaps even two standard deviations above the
mean. The trouble is, this approach is overly conservative
and leads to plans with less science gain than is typically
possible. In the example from the previous section, if plan
execution was expected to begin at 13:45, this approach
would lead us to build a “safe” primary plan that replaces
NIR with the HiRes action, with expected utility of 10 in all
cases, instead of the more ambitious current primary plan,
with expected utility of 0 in the worst case, but 32 in the
average case and 100 in the best case.

A more ambitious approach to the problem would be to
build an initial plan based on the expected behavior of vari-
ous activities and then attempt to improve that plan by aug-
menting it with contingent branches. This is the approach



taken by Drummond, Bresina and Swanson with their Just-
in-Case (JIC) telescope scheduling [13]. This approach is
intuitively simple and appealing, but extending it to prob-
lems like the one we have outlined is non-trivial. The
primary difficulty is to decide where contingent branches
should be added to a plan. In JIC scheduling, branches
were added at the points with the greatest probability of
plan failure. Given the distributions for time and resource
usage this is relatively easy to calculate by statistical simu-
lation of the plan. Unfortunately, the points most likely to
fail are not necessarily the points where useful alternatives
are available. The points of maximal failure probability
may be too late in the plan to have enough time or power
left for any useful alternative. A more efficient approach
could be to identify the earliest point in time where we can
predict with a given confidence that a failure is going to
occur.

Unfortunately, the problem of finding “high utility” branch
points is non-trivial. Figure 5 shows the expected utility
over time of the possible plans with a single branch, for a
fixed starting energy of 11. Note that at earlier start times,
the plans with the highest expected utility are those that
postpone the decision to later in the primary plan, where
the possibility of receiving the 100 reward for the NIR ac-
tion can be more accurately assessed. Between 49200 and
49700 seconds, the expected utility of 55 gained by im-
mediately taking the RockFinder branch dominates as that
plan is likely to succeed when started later than the pri-
mary plan. The value function for this branch drops off
very sharply because there is relatively little uncertainty
about the duration of this plan. As time advances, the value
of branching later is apparent. Late branches look better
when time is short because of the chance that an earlier
action will happen unusually quickly, allowing the primary
plan to be completed. Late branches to the RockFinder per-
form worse than to HiRes because there is rarely enough
time remaining after the VisualServo action to complete the
RockFinder plan. These plans finally dominate when there
is very little time available because even the HiRes branch
is unlikely to be completed.

4.3 FINDING THE BRANCH CONDITIONS

Once we have decided to add a branch to a plan, there is
still a problem of deciding under what conditions to take
the branch. Once again, we could use dynamic program-
ming to compute the optimal conditions, but this suffers
from the problems we described above. In addition, as Fig-
ure 3 illustrates, the optimal conditions can be extremely
complex and hard to represent. The flat surfaces of utility
5 and 55 correspond to branching to the RockFinder plan
before the first step of the primary plan. The primary plan
(along with the later possible branch to the HiRes plan) is
of higher expected utility where the surface is curved. The
conditions for the branch point at the beginning of the pri-
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Figure 5: Utility for a single branch at different possible
branch points with energy = 11.

mary plan are thus the boundaries between the curved sur-
faces and the flat surfaces. The boundaries are in this case
discontinuous, corresponding to a disjunctive condition.

It is important to bear in mind that the boundaries are gen-
erally places where the values of two different branches are
equal, which means that approximate solutions will usually
be acceptable here. One possibility is to treat the continu-
ous dimensions of the problem as independent, which re-
sults in rectangular regions. This works well in most cases,
but the boundaries must be chosen with care where there
are abrupt edges in the value function. This approximation
may also fail if there are dependencies between the dimen-
sions, for example when the energy used for driving is de-
pendent on the actual time spent, rather than being treated
independently as in our example.

5 CONCLUSIONS

For a Mars rover, uncertainty is absolutely pervasive in the
domain. There is uncertainty in the duration of many activi-
ties, in the amount of power that will be used, in the amount
of data storage that will be required, and in the location
and orientation of the rover. Unfortunately, current tech-
niques for planning under uncertainty are limited to simple
models of time, and actions with discrete outcomes. In the
rover domain there is concurrent action, actions of differ-
ing duration, and most of the uncertainty is associated with
continuous quantities like time, power, position and orien-
tation.

For any non-trivial problem, it seems unlikely that exact
or optimal solutions will be possible. Nor do we have
good heuristic techniques for generating effective contin-
gent plans. It seems that new and dramatically different
approaches are needed to deal with this kind of problem.
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